How to Manage Scraped Data in a Simple SSR App
1️⃣ Choose a Data Format for Storage
- JSON – For APIs or NoSQL databases.
- CSV – For tabular data.
- SQL – For relational data.
- NoSQL – For flexible data structures.
2️⃣ Recommended Data Structure
📁 JSON / NoSQL (MongoDB, Firebase)
{
"products": [
{
"id": "prd_001",
"name": "Smartphone XYZ",
"category": "Electronics",
"price": 199.99,
"supplier": {
"name": "Shenzhen Tech Co.",
"contact": "supplier@example.com"
},
"stock": 50,
"rating": 4.5,
"importDate": "2025-03-01T10:00:00Z"
}
]
}
📊 Relational Database (SQL - MySQL, PostgreSQL)
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name VARCHAR(255),
category VARCHAR(100),
price DECIMAL(10,2),
supplier_id INT,
stock INT,
rating FLOAT,
import_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (supplier_id) REFERENCES suppliers(id)
);
CREATE TABLE suppliers (
id SERIAL PRIMARY KEY,
name VARCHAR(255),
contact VARCHAR(255)
);
3️⃣ Handling Data in the Backend
- Fetching Data → Use an API to pull new data periodically.
- Cleaning & Normalizing → Ensure data consistency.
- Storing Efficiently → SQL for structured, NoSQL for flexible storage.
- Serving via SSR → Fetch from DB and render on Next.js/Nuxt.js/Express.js.
4️⃣ Data Processing Flow
- Scrape & Fetch → Data is fetched from the source.
- Validate & Clean → Remove duplicates, incorrect values.
- Store → Insert into SQL/NoSQL databases.
- Serve → API endpoints for SSR apps.
- Update & Archive → Older data can be archived in CSV/JSON.
5️⃣ Best Practices
- Use cron jobs to schedule updates.
- Normalize data in SQL databases for efficiency.
- Use Redis/Memcached for caching.
- Store backups in CSV/JSON format.
Which One Should You Use?
- Use SQL if data has strong relationships.
- Use NoSQL if data is flexible.
- Use JSON/CSV for backups and exporting reports.
Let me know if you need a sample implementation! 🚀