How to Manage Scraped Data in a Simple SSR App

1️⃣ Choose a Data Format for Storage

2️⃣ Recommended Data Structure

📁 JSON / NoSQL (MongoDB, Firebase)

{
  "products": [
    {
      "id": "prd_001",
      "name": "Smartphone XYZ",
      "category": "Electronics",
      "price": 199.99,
      "supplier": {
        "name": "Shenzhen Tech Co.",
        "contact": "supplier@example.com"
      },
      "stock": 50,
      "rating": 4.5,
      "importDate": "2025-03-01T10:00:00Z"
    }
  ]
}

📊 Relational Database (SQL - MySQL, PostgreSQL)

CREATE TABLE products (
    id SERIAL PRIMARY KEY,
    name VARCHAR(255),
    category VARCHAR(100),
    price DECIMAL(10,2),
    supplier_id INT,
    stock INT,
    rating FLOAT,
    import_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (supplier_id) REFERENCES suppliers(id)
);

CREATE TABLE suppliers (
    id SERIAL PRIMARY KEY,
    name VARCHAR(255),
    contact VARCHAR(255)
);

3️⃣ Handling Data in the Backend

4️⃣ Data Processing Flow

  1. Scrape & Fetch → Data is fetched from the source.
  2. Validate & Clean → Remove duplicates, incorrect values.
  3. Store → Insert into SQL/NoSQL databases.
  4. Serve → API endpoints for SSR apps.
  5. Update & Archive → Older data can be archived in CSV/JSON.

5️⃣ Best Practices

Which One Should You Use?

Let me know if you need a sample implementation! 🚀